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Abstrac t  

This paper exhibits accurate encodings of the A-calculus in the ~r-calculus. 
The former is canonical for calculation with functions, while the latter is a recent 
step [15] towards a canonical treatment of concurrent processes. With quite simple 
encodings, two A-calculus reduction strategies are simulated very closely; each 
reduction in A-calculus is mimicked by a short sequence of reductions in r-calculus. 
Abramsky's precongruence of applicative simulation [1] over A-calculus is compared 
with that induced by the encoding of the lazy A-calculus into 7r-calculus; a similar 
comparison is made for call-by-value )~-calculus. 

The part of 7r-calculus which is needed for the encoding is formulated in a new 
way, inspired by Berry's and Boudol's Chemical Abstract Machine [5]. 

1 I n t r o d u c t i o n  

This paper  shows how the operational model of pure functional programming,  where 
concurrency and s tate  are only implicit, fits comfortably inside an operational model 
of concurrent processes where concurrency and state are dominant features. More pre- 
cisely, we exhibit accurate encodings of the A-calculus in the ~r-calculus. The  former is 
canonical for calculation with functions, while the lat ter  is a recent step [15] towards a 
canonical t rea tment  of concurrent processes. We show that ,  with quite simple encodings, 
at least two A-calculus reduction strategies can be simulated very closely; each reduc- 
tion in A-calculus is mimicked by a short sequence of reductions in ~r-calculus. For the 
encoding of lazy A-calculus, we compare Abramsky 's  precongruence over A-terms known 
as applicative simulation [1] with that  which is induced by the encoding; we also make 
a similar comparison for the call-by-value A-calculus. 

Process calculi of an algebraic nature  have been studied and used for about  a decade. 
Most of them lack two related features [3, 11, 13]; the ability to t reated processes as values 
which may  be t ransmi t ted  from one (perhaps higher-order) process to another, and the 
ability to t reat  in~er-process links as transmissible values. The lack of these features has 
been both  an advantage and a limitation. An advantage, because the algebraic theory 
has been simpler - or at least has been easier to develop - than seemed possible with 
either feature present; a limitation, because without those features certain phenomena 
can be modelled at best indirectly. 

*This research was partly done during sabbatical leave from Edinburgh University, on a four-month 
visit to INRIA at Sophia Antipolis, France. I am grateful both to Edinburgh University and to the 
French Ministry of Technology for their support. 
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Recently, several generalisations of process calculus to embrace processes-as-values 
have been proposed; examples are by Boudol [6], F.Nielsen [16] and Thomsen [19]. Ex- 
plicitly or implicitly, they have enabled embedding of the A-calculus; this is a useful 
measure of power. Indeed, these proposals share with functional calculi the idea that  
one can encapsulate as a value an agent which can be instantiated, or excited, or applied 
to yield a computation; we therefore say that  they follow the functional paradigm. 

On the other hand, there have been proposals closer to the notion of links-as-values. 
In one approach, that  of Astesiano and Zucca [2], the effect was achieved indirectly by 
allowing links to be value-dependent rather than to be themselves values. By maintaining 
this separation between links and values the authors were indeed able to present their 
model as a generalisation of CCS, retaining its equational laws. There have also been 
more direct approaches, allowing links to be themselves values; of these, the work of 
Engberg and M.Nielsen [9] was until recently the most theoretically developed, retaining 
a significant amount of algebraic theory. 

The r-calculus, first presented in [15], builds upon this last work. (Engberg and 
Nielsen did not publish their report, and it has not received due attention - probably 
because its treatment of constants, variables and names is somewhat complex.) In com- 
mon with other "links-as-values" approaches, it replaces the functional paradigm by a 
significantly different paradigm. In the latter, which we may call the object 1 paradigm, 
that  which is transmitted and bound is never an agent, but rather access to an agent. 
It is only as a special case that  one agent may have sole access to another. The object 
paradigm is hardly new, but there has never been a canonical encapsulation of it, in the 
way that A-calculus encapsulates the function paradigm. But there have been signs of 
its power; for example, following an early ideas of Hewitt [8], even a humble data value 
can be modelled as an independent agent - one which remains constant (i.e. invariant 
under access.) 

Both paradigms seem equally basic and significant. Without arguing naively in favour 
of the object paradigm, our aim in the r-calculus has been to present it in undiluted form. 
Since higher-order (agent) parameters are sacrificed, a succinct translation between the 
paradigms is by no means preordained; all that  we know is that  some translation from the 
function to the object paradigm must exist, since functional languages are successfully 
implemented on machines which - with their arithmetic units, programs and registers - 
can be seen just as assemblies of objects. 

Another theme of the present paper is a new way of formulating the r-calculus, or 
at least the fragment of r-calculus that  we need for encoding A-calculus, inspired by 
Berry's and Boudol's Chemical Abstract Machine [5]. Their analogy of an aggregate 
of processes moving and interacting within a solution has probably occurred vaguely 
to many people, but Berry and Boudol have made the analogy technically robust. We 
reflect their intuition here by means of axioms for a structural congruence relation over 
process terms; this yields a welcome simplicity in presenting the reduction rules. 

The paper is self-contained as far as its main purpose, encoding A-calculus, is con- 
cerned; no knowledge of our original presentation of z-calculus [15] is needed. The proofs 
of the results given here can be found in a technical report [14], which also establishes 
complete consistency between this presentation and the original. 

1The connotation here is with object-oriented programming - in particular, the idea of objects with 
independent state interacting with one another. 
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2 T h e  : r - c a l c u l u s :  T e r m s  

We presuppose an infinite set Af of names. We shall use x, y, z , . . .  and sometimes other 
small letters to range over .Af. 

The ~r-calculus consists of a set 7 ~ of terms, sometimes called agents, which intuitively 
stazld for processes. We shall use P, Q, R to range over ~'. We shall write P{V/x} to 
mean the result of replacing free occurrences of x by Y in P,  with change of bound names 
where necessary, as usual. (There will be two ways of binding names.) 

The first class of terms consists of guarded terms g.P, where P is a term and g is a 
guard; guards g have the form 

g ::= xY 1 x(y) 

Informally, ~y.P means 'send the name y along the link named x, and then enact P ' ;  
on the other hand, x(y).P means 'receive any name z along the link named x, and then 
enact p{z/y},. Thus the guard x(y) is like the A-prefix Ay in that  it binds y; it is unlike 
Ay in that  every name x E A f  is a binder like A, but that only names (not terms) may 
replace bound names. 

The second class of terms express concurrent behaviour. The principal form is com- 
position PIQ, which, informally speaking, enacts P and Q concurrently allowing them 
to interact via shared links (i.e. shared names). Interaction can occur in the case 

x(y).P I~z.Q (1) 

and we expect the result of interaction to be p{z/y}]Q. This differs from fl-reduction 
( )~x i )N ~ i { N / x }  in one essential: the 'sender' ~z.Q pursues an independent future 
(as Q) after the interaction, while in/~-reduction the future behaviour of the argument N 
is eontrolled by M via the variable x (in a way which varies from one reduction strategy 
to another).  This exactly reflects the crucial difference, mentioned in the introduction, 
between the function and object paradigms. 

Allied to composition is replication, !P; roughly, it stands for P{PI'" ", as many 
concurrent instances of P as you like. Also allied is inaction, the degenerate composition 
of no processes, denoted by 0. 

The third class of terms has only one form: the restriction (x)P. It confines the use 
of x as a link to within P.  Thus, no intraaction, i.e. interaction between components, 
can occur in 

x(y).P [ (x)(~z.Q) 

On the other hand, if (x) is applied to (1) then no interaction at x can occur between 
this term and any terms which may surround it; one therefore expects the equation 

(x)(x(y).P I ~z.Q)) ~ (x)(p{Z/y} l Q) 

for some congruence relation ~.  
To summarise: for this paper, the syntax of P is 

P ::= ~y.P [ x(y).P [ 0 [ P[Q ] !p I (y)P 

There are a few differences from the 7r-calculus given in [15]. Only one is a novelty: 
the presence of !P. Replication 2 replaces recursion; for many purposes replication does 

2To the original rules [15] of ~r-calculus, add the following (misstated in [14], footnote 2): 

p[!p ~ pi 
!p ~ I -+p 
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the job of recursion (perhaps even for all useful purposes), and is simpler to handle 
theoretically. Otherwise, we are dealing with a sub-calculus. We have omit ted r . P  
(silent guard), [x=y]P (matching) and P+Q (summation). The first two present no 
difficulty for the present formulation, nor does summation in the limited form ~i gi.Pi 
(sum of guarded terms). It is open how best to handle full summation in the present 
formulation; but  see the method adopted by Berry and Boudol in the Chemical Abstract 
Machine [5]. 

Some technical details and terminology: 

• There are two forms of binding: x(y) and (y). Note that x is free in x(y).P. We use 
fn(P)  for the free names of P,  bn (P)  for the bound names of P ,  and n (P)  for all 
names occurring in P.  

• We call x the subject and y the object of the guards z(y) and ~y. 

• We say that  an occurrence of a term Q in P is guarded if it occurs within any 
guarded term in P ,  otherwise it is unguarded. 

• We shall often use 5 to mean a sequence x l , . . . ,  xn of names; s imilarly/5 for a 
sequence of terms. Without  risk of confusion, we also treat  5 sometimes as a set. 
We also write (5) for the multiple restriction (xD. . .  (x,) . 

• We shall use several convenient abbreviations: 

- We shall often omit ~.0' in an agent, and write for example ~y instead of ~y.0. 

- We shall elide several guards with the same subject, for example x(y)(z) means 
x(y).x(z) and "~yz means xy.xz. 

- The agent (y)~y.P can be thought of as simultaneously creating and sending 
a new private name, when x # y; we abbreviate it to ~(y).P. 

So with all these abbreviations we shall be able to write agents like x(y)(z).yz(x), 
meaning x(y).x(z).~z.(x)~x.O. 

3 T h e  7 r - c a l c u l u s :  E q u a t i o n s  a n d  R e d u c t i o n s  

Our operational intuition is simple: if term R contains two unguarded subterms x(y).P 
and "Zz.Q, and each restriction (x) contains both or neither (so that  x means the same 
for both subterms), then they can interact; this interaction yields a reduction R --* R'. 
A few examples: 

• Let R be x(y).P 1 ~Zl.Q1 I~z2.Q2. There are two reductions 

R ~ p{zgy} I Q1 [bz2.Q2 
R ~ p(z~/y} t'bz~.Q, t Q2 

• Let R be w(x).(x(y).P l~z.Q). There is no reduction; the subterms are guarded. 

• Let R be x(y).P [ (x)('~z.Q). There  is no reduction. 
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• Let R be x(y).P [ (z)(hz.Q). Assuming z not free in P there is a reduction 

R -+ (z)(p{zly} I Q) 

We call this phenomenon extrusion (of the scope of a restriction); the name z 
is private to (z)hz.Q, but its transmission has enlarged its scope to embrace the 
recipient. 

To simplify the form of the reduction rules, we first define a structural congruence relation 
over terms. This approach is inspired by Boudol and Berry [5], though our formulation 
differs from theirs. The  idea is that  one should separate the laws which govern the 
neighbourhood relation among processes from the rules which specify their interaction. 

3 . 1  D e f i n i t i o n  
satisfying these equations: 

(1) P = Q whenever P is alpha-convertible to Q 

(2) R i O = P ,  P [ Q - Q 1 P ,  P I ( Q t R ) = - ( P t Q ) I R  

(3) ! P -  P t !P 

(4) (x)0 --" 0 , (x)(y)P - (y)(x)P 

(5) (x)(P I Q) = p [ (x)Q i f x n o t f r e e i n P  

Structural congruence, written = , is the smallest congruence over P 

A few facts are easily seen: 

• Using the equations, all unguarded restrictions can be moved outermost.  Note 
particularly: !(x)P =_ (x)P I !(x)P - (x)(P I !(x)P). 

• The interaction condition mentioned at the start of this section is invariant under 

• Using the equations, any two potential interactors x(y).P, ~z.Q can be brought 
together as x(y).P [ ~z.Q, but possibly with alpha-conversion; for example, if z is 
free in P then 

x(y).P [ (z)(~z.Q) - (z')(x(y).P [hz'.Q{Z~/z}) 

where z ~ is new. 

3 . 2  D e f i n i t i o n  
rules: 

Reduction, written --% is the smallest relation satisfying the following 

COM : x(y).P ] ~z.Q --+ p{z/y} [ Q 

P A R  : 

RES : 

STRUCT : 

p -+ p* 

P [ Q - + P ' f Q  
p -+ p, 

(y)p _+ (y)p, 

Q -  p p - +  p, p, = Q, 
Q -+ Q, 
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It is worth noticing that ,  just because of equation (3) in 3.1 for replication, structural 
congruence may be hard to determine (perhaps even undecidable), and this may cause 
some alarm in seeing the rule STRUCT, since we certainly want ~ to be computable. 
But we are saved by the invariance of the interaction condition under ~ , noted above; 
the interactions possible in a given term are quite manifest. In fact: 

3.3 P r o p o s i t i o n  A finite set Red(P)  of agents can be recursively computed from P,  
such that  P -~ P '  if and only if P '  = P"  for some P "  C Red(P) .  • 

The present formulation of 7r-calculus differs strikingly from that  in [15]. The essential 
difference is in the use of structural congruence. This is inspired by the Chemical Ab- 
stract Machine of Berry and Boudol [5]. Their insight is that the rules of structured 
operational semantics, as used in [13] or [15] for example, treat  in the same way two 
concepts which it is worth separating: the physical structure of a family of concurrent 
agents and their interaction. Of course, one advantage of avoiding the imposition of 
structural congruence equations as axioms is that ,  once a behavioural congruence is de- 
fined - as in [13] - it turns out that  the structural equations are obtained as theorems, 
and this gives added confidence. But then these equations are not kept clearly distinct 
from other theorems which only hold because of the particular way in which observation 
is characterised in the behavioural congruence. (For example, observation congruence 
in [13] is based upon the idea of a sequential observer, and yields equations which do 
not hold in a model which respects causality.) By proposing the structural laws as ax- 
ioms, one makes the distinction and achieves some simplicity at the same time (at least, 
when summation is not considered); one also offers the challenge to find an interesting 
behavioural congruence which fails to satisfy the axioms (strongly suspecting that  there 
is none!) 

For the next  section we shall need the following: 

3.4 D e f i n i t i o n  P is r-determinate if, whenever P --** Q and also Q --* Q1 and Q --* Q2, 
then Q1 =- Q2. Also, P converges to Q, written P ~ Q, if P --** Q 7~; we write P J. to 
mean P converges to some Q, and PT otherwise. 1 

4 T h e  l a z y  A - c a l c u l u s  

Let the set of Variables, A', be an infinite and co-infinite subset of Af. For this section, 
we shall let x, y, z range over A', and u, v, w range over Af -X.  Our encoding of A-calculus 
into zr-calculus will be all the simpler because we treat  a variable x of A-calculus also as 
a name of ~r-calculus. 

We shall use L, M, N to range over the terms £ of A-calculus, which are defined as 
usual by: 

M ::= x [ AxM [ M N  

the last two forms being abstraction and application. The free variables fv(M) of a 
term M are defined in the usual way. {N/z} means substitution as usual. We shall 
frequently need the the sequential composition of several substitutions (note: not simul- 
taneous substitution); so, understanding the members of 5 to be distinct, we introduce 
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the abbreviation 

stands for 

We shall use the standard terms 

I ae_=f ~xx y a,=f )~f(Axf(xx))()~xf(xx)) 
g d~f ~x)~yx ~ aef ()~xxx)(~xxx) 

There are many reduction relations --% all of which satisfy the rule 

/3: (AxM)N --+ M { N / z }  

The relations differ as to which contexts admit reduction. The simplest, in some sense, 
is that  which admits reduction only at the extreme left end of a term. This is known as 
lazy reduction: 

4.1 D e f i n i t i o n  The lazy reduction relation --* over £ is the smallest which satisfies 
/3, together with the rule 

M --+M I 
A P P L  : 

M N  --~ M ' N  

With the usual convention that L M N  means (LM)N,  this implies that  in any term M, 
writing it as 

M = MoM1M2.. .  M,~ (n >_ O) 

where Mo is not an application, the only reduction possible is when n _> 1 and M0 - AxN, 
and then the reductum is 

u{M1/x}M~ .. .M ,  

Thus -~ is r-determinate - i.e. every M is r-determinate; given M, there is at most one 
M'  for which M --~ M'.  We write --*+ for the transitive closure of -% and --+* for the 
transitive reflexive closure. 

4.2 D e f i n i t i o n  M converges to M' ,  written M $ M ' ,  if M --+* M'  74; also, M.~ means 
that  M converges to some M'.  m 

If M ~ M', then M'  can only be an abstraction ~xN or else of the form xN1. . .  Nn 
(n > 0). Writing £o for the dosed terms, if M • £o then M'  C £o also, so M' must be 
an abstraction. 

Abramsky [1] defines an important  preorder < , which we shall call applicative 
simulation, as follows: 

4.3 D e f i n i t i o n  Let L, M E g0. Then L ~< M if, for all sequences N in £0: 

LN.L implies M N  J~ 

If L , M  • £: with free variables ~, we define L g M to mean that  L{N/~} <~ M{N/~}  for 
all N in £ o  • 
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Abramsky continues to study both the model theory and the proof theory of < and 
of applicative bisimulation, ~ (i.e. ~< fl ~> ). We need very little of this here, but 
should remark that  it firmly establishes the importance both of lazy reduction and of 
these relations, and hence provides a natural point at which process calculus may try to 
make contact with A-calculus. We recall from [1] that  (AxM)N E M{N/x} , and that  
~< is a precougruence. The latter follows from the result that,  defining a context C[__] 
to be a term with a single hole, 

M < N iff, for every closed context C[__], C[M] J. implies C[N] ~. 

We now turn to the encoding of/~ into T'. Perhaps one hardly expects to find a 
more basic calculus than the A-calculus. All the same, it takes as primitive the remaxk- 
ably complex operation of substitution (of terms for variables). Two important means 
have been found to break this operation into smaller parts. In combinatory algebra [7], 
Curry found combinators which progressively distribute the argument of an abstraction 
AxM to those parts of the body M which will use it (thus, in fact, eliminating vari- 
ables altogether). On the other hand, implementations of functions and procedures in 
programming languages have traditionally used the notion of environment, a map from 
variables to terms; thus, instead of executing M{N/x} one executes M itself in an envi- 
ronment which binds N to the variable x. The encoding which follows can be seen as a 
formalisation of the latter idea. 

Each M E/2 is encoded as [M], a map from names to P.  Thus [M]u is a term of 
r-calculus, and will have free names given by 

fn([M]u) = fv(M) tO {u} 

The name u is the link along which [M] 'receives' its arguments. 
Now, suppose that M will itself be used in place of an argument represented by the 

variable x. Each time M is 'cMted', via x, it must be told by the cMler where to receive 
its own arguments. (In more familiar terminology, it must be given a pointer to its 
arguments.) The 'environment entry'  binding x to M is therefore the ~r-term 

~x :: M~ aa ]x(w).~M~w 

In passing, note particularly the replication. This is not needed if M will be cMled at 
most once; therefore the linear A-calculus, in which each variable x must occur exactly 
once in its scope, may be encoded in the fragment of 7r-calculus without replication. The 
link with Girard's 'of course' connective '!' of linear logic [10] should be explored; his 
notation has been chosen here deliberately. 

How does [AxM]u receive its arguments? Along u it receives (as x) the name of its 
first argument, and also the name of a link where the rest will be transmitted. This 
explains the first line of our encoding, which we now give in full: 

[AxM]u dej u(x)(v).[M]v 
[@, de,  

[MN]u de2 (v)([U]v [~(x)u.[x:=N~) 

(x not free in N) 
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Let us look at the reduction of a simple example, in which we assume x not free in N 
(recall the abbreviations listed at the end of Section 2): 

~()~xx)N]u = (~)( . (~)(~) .~  I v(x)~.[z:=N]) 
(v)(x)(v(w).~w I ~u.ix := N])  (2) 

-~ ( = ) ( ~  1 Ix := N])  (3) 
- ( x ) ( ~  l !x(~) . [N]~)  

-~ [N~u I (x)[x:=N~ (4) 
,.~ [N]u (5) 

The following remarks will help in reading the above calculation: 

• In obtaining (2), recalling that  ~(x).Q means (x)vx.Q, equation (5) of Definition 3.1 
must first be used to allow COM to be applied. 

* The restriction (v) is dropped in (3) because v no longer occurs. Formally, if 
v ¢ fn(R) then 

( , )R =_ (v)(R l O) - R l(v)O - n lO - R 

* In (4), (x) has been moved inwards, since x ~ fn([N]u). 

• The last step, to (5), is the only one which goes beyond ~ ; it is a simple case of 
strong blsimilarity- see [15] - and represents the garbage-collection of an environ- 
ment entry ~x := N~ which cannot be used further (since the subject x of its first 
action is restricted). 

The correspondence between the reduction of [M] in the 1r-calculus and that  of M in the 
A-calculus is very close. Each step in A-calculus is matched - in a fully determinate way 

- by a short sequence of steps in 7r-calculus. The essential difference, as was mentioned 
earlier, is that  substitutions {M/x}, which are actually performed upon A-terms, are 
represented in ~ by what we have called environment entries Ix := M] which are agents 
in their own right. 

Let us introduce the abbreviation 
N 

[ ~ : = N ]  stands for [ = l : = g d l " "  [[xk:=Nk] 

for the composition of several environment entries. Then the match between the reduc- 
tion of dosed A-terms and the corresponding r-terms leads to the following theorem: 

4.4 T h e o r e m  (Lazy encoding) For all L E ~C °, [L]u is r-determinate, and one of the 
following conditions holds: 

i .  L.[ i '  and [i]u ~ P ' ,  where 

L 1 - )kyM{NI~} and P' -(~2)(~.~yM~u I ~5:--N~) 

B. LT and ~L~uT. • 
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Let us now briefly compare precongruence in the r-calculus with Abramsky's precongru- 
ence of applicative simulation for the A-calculus. 

The reduction relation ~ only tells part of the story of the behaviour of a r - te rm 
P; it describes how P's parts may interact with each other, but not how P (or its 
parts) may interact with the environment. Without repeating all the detail from [14], 
we need to recall that  the full behaviour of a r - te rm is presented by means of a labelled 
transition relation -%, where a ranges over observable actions, in addition to the relation 
Z+ (corresponding to ~ here), where T is the unobservable action. Then we define 
=~ = -+*--%-+*, so that P =q~ means ' a  may be observed of P ,  ignoring unobservable 
actions'. The simplest precongruence over T' is then defined as follows: 

4.5 Definit ion 

(1) P E  Q if, for all a, P :=~ implies Q =~. 

(2) P E_ Q if, for all contexts C[__], C[P]E C[Q] . 

This is a weak precongruence, which may be described as 'inclusion of trace-sets in all 
contexts'; however, for determinate r-terms - such as the translations of A-terms - it 
agrees with stronger ones. But we can show that  even this weak congruence is strictly 
stronger than ~ as far as (the translations of) A-terms are concerned: 

4.6 T h e o r e m  (Lazy precongruence) Let Li,L2 E f o. Then 

(1) [[L1]u E_ [[L2]~u implies L1 <~ L2 

(2) Li <~ L2 does not imply [L~]u E [[L2]u 

The proof of (1) is quite short, using our encoding theorem. For (2), one can adapt 
a counterexample of Ong [17], which strengthens Abramsky's result that  his canonical 
model of the lazy A-calculus is not fully abstract [1]. 

5 T h e  c a l l - b y - v a l u e  A - c a l c u l u s  

We shall now, more briefly, repeat our programme for the ca11-by-value A-calculus [18], 
where reduction in £0 may only occur when the argument is an abstraction. The terms 
/~ are as before, and it is also convenient to define the values )) by 

V ::= x [ A z M  

We shall let U, V, W range over ~2. 

5.1 Def in i t ion  The call-by-value reduction relation -% is the smallest which satisfies 
the rules 

#v : (AxM)V--,v  M(VI~ ) 

M ~ M' N ~ N' 
A P P L  : A P P R  : • 

M N  ---~,, M ' N  M N  -% M N '  
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Reduction -+v is not determinate, 3 but  it is well-known that  convergence J,v is; if 
M Sv M t then M ~ is unique. Moreover, convergence is strong: if M Sv M r then all 
reduction sequences from M axe finite. (The definitions of ~ and Tv are analogous 
with those for the lazy calculus.) 

The corresponding applicative simulation relation < v is again a precongruence a, 
and (AxM)VZ,~M{V/x}.  

5.2 F a c t  < and < ,  axe incomparable. 
P r o o f  I < K I f ~  ~ f t  , and I ~ K I f t ~ < v f t  . 

We now turn to encoding in r-calculus. We shall continue to let x, y, z range over 2( 
and now let p, q, r, u, v, w range over A f - X .  In our new encoding ~M]vp , the name p 
will have a different significance. The reason is that  two 'events' which coincided for the 
lazy calculus must now be separated, namely 

, the signal at p that  M has reduced to a value (needed when M is the argument of 
an application); 

. the receipt of arguments by an abstraction M (needed when M is applied). 
Further,  our 'environment entries' will now contain only values. So we begin by defining 
[y := V]~ : 

~y:=~xM]]~ d e_f !y(w).w(x)(p).][M]vP 
[y := x]~ ~f  !y(w).'Zw 

Now the first action of a (translated) value, [V]~p, must be to announce its valuehood, 
thus providing access to an 'environment entry' .  Note that  [y := V L is here a subterm 
of ~V]v p ; whereas the opposite was true in the lazy encoding. And, in contrast with 
the lazy calculus, the translation 
' run '  in parallel: 

[VII def  vP ~- 

[MN] def 
vP ~- 

ap(p~ q, r) de__r 

~MN]v p of an application must allow M and N to 

p(y). [y := V]v (y not free in V) 

(q)(r)(ap(P,q,r) l [M]vq l lN]vr) 

q(y).~(v).r(z).~zp 

We now define the property which we wish [M]v p to possess, in place of determinacy: 

5.3 D e f i n i t i o n  P is weakly determinate if, whenever P ---+* Q , then 

(i) If Q--+Q1 and Q ~ Q 2 , t h e n e i t h e r  Q 1 - - Q 2  or Q1--+Q'  and Q 2 ~ Q '  for 
some Qt. 

(ii) If Q2 +  f o r ~ r ,  then Q ? 4 .  • 

We can now present a characterisation, almost exactly the same as for the lazy A-calculus, 
of the way in which reduction in r-calculus matches reduction in A-calculus: 

3plotkin's reduction rules [18] were more determinate than here, but the difference is unimportant. 
4For this, we have to prove: If M ~ vN then C[M] ~v implies C[N] ~v. Allen Stoughton has pointed 

out that there is a simple direct proof of the corresponding 'context lemma' for lazy A-calculus, following 
Berry and Levy [4] or Milner [12]; the same holds (with a little more trouble) for the call-by-value case. 
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5.4 T h e o r e m  (Call-by-value encoding) 
and one of the following conditions holds: 

A. L$,V and [[L]vp~P , where 

V - w{U/5} and 

B. LT. and [L].pT. 

For all L E £o, [L],,p is weakly determinate, 

We also find the same relationship of precongruences as in the lazy case: 

5.5 T h e o r e m  (Call-by-value precongruence) Let L1, L2 E / : 0  Then 

(1) [i~],p E ~i2],p implies LI <~,L2 

(2) i i  ~ ,L2 does not imply ~L1]vp G [L:],p 

The proof of (1) is just as in Theorem 4.3. For (2), consider the following: 

(()()) LI = Ax xI xK 

L: dg Ax((Ayy(xK))(xI)) 

fickle(r) dej ~(y).y(u).(u(x)(p).[[Ki]vply(v).v(x)(p).[l~p) 

and place each [Li]vq in the context 

(q)(r)(ap(p, q, r) l - -]  fickle(r)) 

6 C o n c l u s i o n  

We have only begun here to explore the treatment of functions in the ~r-calculus; the 
reader will already have posed many questions. For example: Exactly what is the pre- 
order _ induced upon A-terms by L __U_ M de~ ~L]u G [[M][u ? And are other reduction 
strategies easy to encode? 

In fact, we define 

They are all equivalent under ~ , . .  But in L~, x will be applied to I first, while in La 
it will be applied to K first. (In L1 either may happen.) So in 7 ~ we construct a fickle 
'function' which behaves differently on successive calls; it will behave like KI  the first 
time it is called, and like I the second time. When (the encodings of) L2 and L3 are 
'applied' to the fickle function, the results will be respectively (the encodings of) 

(KH)(IK) ,-,v= K 
(II)(KIK) =..~v I 
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On the latter point, close examination of strategies reveals what may be called an 
oddity, seen in the light of the object paradigm. Consider any strategy in which all the 
rules fl, A P P L  and APPtt hold. Suppose that M[x, x] is a term in which x occurs twice 
not within an abstraction, and suppose 

N = N I ~ N 2 - - * " ' ~ N ~ - * " "  

Then of course 

( AxM)N --*... --~ ( AxM)Nk --* M[Nk, Nk] --** M [ N ~ ,  N ~ ]  -* . . . 

For the first k steps, N's reduction is 'shared'; thereafter, two separate reductions of Nk 
can continue within M, at different speeds (and in different directions too). This familiar 
situation looks odd if N is modelled as an agent; why should it clone into two or more 
copies just because access to N is transmitted through x? (Of course, it is reasonable 
for N to clone when it is eventually applled to two or more different arguments within 
M.) Naturally, the strategies which have been most deeply studied are those most 
easily expressed using the textual substitution which is basic to A-calculus. One effect 
of providing z-calculus as a substrate may be to intensify the study of other strategies, 
such as those with shared reductions. 

As far as application is concerned, we hope that the results of this paper will throw 
some light on the semantics of programming languages which contain both concurrency 
and non-trivial use of procedures or functions. 
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