
Functions as Processes *

Robin Milner
Dept. of Computer Science, University of Edinburgh

Edinburgh EH9 3JZ, Scotland

Abstrac t

This paper exhibits accurate encodings of the A-calculus in the ~r-calculus.
The former is canonical for calculation with functions, while the latter is a recent
step [15] towards a canonical treatment of concurrent processes. With quite simple
encodings, two A-calculus reduction strategies are simulated very closely; each
reduction in A-calculus is mimicked by a short sequence of reductions in r-calculus.
Abramsky's precongruence of applicative simulation [1] over A-calculus is compared
with that induced by the encoding of the lazy A-calculus into 7r-calculus; a similar
comparison is made for call-by-value)~-calculus.

The part of 7r-calculus which is needed for the encoding is formulated in a new
way, inspired by Berry's and Boudol's Chemical Abstract Machine [5].

1 I n t r o d u c t i o n

This paper shows how the operational model of pure functional programming, where
concurrency and s tate are only implicit, fits comfortably inside an operational model
of concurrent processes where concurrency and state are dominant features. More pre-
cisely, we exhibit accurate encodings of the A-calculus in the ~r-calculus. The former is
canonical for calculation with functions, while the lat ter is a recent step [15] towards a
canonical t rea tment of concurrent processes. We show that , with quite simple encodings,
at least two A-calculus reduction strategies can be simulated very closely; each reduc-
tion in A-calculus is mimicked by a short sequence of reductions in ~r-calculus. For the
encoding of lazy A-calculus, we compare Abramsky 's precongruence over A-terms known
as applicative simulation [1] with that which is induced by the encoding; we also make
a similar comparison for the call-by-value A-calculus.

Process calculi of an algebraic nature have been studied and used for about a decade.
Most of them lack two related features [3, 11, 13]; the ability to t reated processes as values
which may be t ransmi t ted from one (perhaps higher-order) process to another, and the
ability to t reat in~er-process links as transmissible values. The lack of these features has
been both an advantage and a limitation. An advantage, because the algebraic theory
has been simpler - or at least has been easier to develop - than seemed possible with
either feature present; a limitation, because without those features certain phenomena
can be modelled at best indirectly.

*This research was partly done during sabbatical leave from Edinburgh University, on a four-month
visit to INRIA at Sophia Antipolis, France. I am grateful both to Edinburgh University and to the
French Ministry of Technology for their support.

t68

Recently, several generalisations of process calculus to embrace processes-as-values
have been proposed; examples are by Boudol [6], F.Nielsen [16] and Thomsen [19]. Ex-
plicitly or implicitly, they have enabled embedding of the A-calculus; this is a useful
measure of power. Indeed, these proposals share with functional calculi the idea that
one can encapsulate as a value an agent which can be instantiated, or excited, or applied
to yield a computation; we therefore say that they follow the functional paradigm.

On the other hand, there have been proposals closer to the notion of links-as-values.
In one approach, that of Astesiano and Zucca [2], the effect was achieved indirectly by
allowing links to be value-dependent rather than to be themselves values. By maintaining
this separation between links and values the authors were indeed able to present their
model as a generalisation of CCS, retaining its equational laws. There have also been
more direct approaches, allowing links to be themselves values; of these, the work of
Engberg and M.Nielsen [9] was until recently the most theoretically developed, retaining
a significant amount of algebraic theory.

The r-calculus, first presented in [15], builds upon this last work. (Engberg and
Nielsen did not publish their report, and it has not received due attention - probably
because its treatment of constants, variables and names is somewhat complex.) In com-
mon with other "links-as-values" approaches, it replaces the functional paradigm by a
significantly different paradigm. In the latter, which we may call the object 1 paradigm,
that which is transmitted and bound is never an agent, but rather access to an agent.
It is only as a special case that one agent may have sole access to another. The object
paradigm is hardly new, but there has never been a canonical encapsulation of it, in the
way that A-calculus encapsulates the function paradigm. But there have been signs of
its power; for example, following an early ideas of Hewitt [8], even a humble data value
can be modelled as an independent agent - one which remains constant (i.e. invariant
under access.)

Both paradigms seem equally basic and significant. Without arguing naively in favour
of the object paradigm, our aim in the r-calculus has been to present it in undiluted form.
Since higher-order (agent) parameters are sacrificed, a succinct translation between the
paradigms is by no means preordained; all that we know is that some translation from the
function to the object paradigm must exist, since functional languages are successfully
implemented on machines which - with their arithmetic units, programs and registers -
can be seen just as assemblies of objects.

Another theme of the present paper is a new way of formulating the r-calculus, or
at least the fragment of r-calculus that we need for encoding A-calculus, inspired by
Berry's and Boudol's Chemical Abstract Machine [5]. Their analogy of an aggregate
of processes moving and interacting within a solution has probably occurred vaguely
to many people, but Berry and Boudol have made the analogy technically robust. We
reflect their intuition here by means of axioms for a structural congruence relation over
process terms; this yields a welcome simplicity in presenting the reduction rules.

The paper is self-contained as far as its main purpose, encoding A-calculus, is con-
cerned; no knowledge of our original presentation of z-calculus [15] is needed. The proofs
of the results given here can be found in a technical report [14], which also establishes
complete consistency between this presentation and the original.

1The connotation here is with object-oriented programming - in particular, the idea of objects with
independent state interacting with one another.

169

2 T h e : r - c a l c u l u s : T e r m s

We presuppose an infinite set Af of names. We shall use x, y, z , . . . and sometimes other
small letters to range over .Af.

The ~r-calculus consists of a set 7 ~ of terms, sometimes called agents, which intuitively
stazld for processes. We shall use P, Q, R to range over ~'. We shall write P{V/x} to
mean the result of replacing free occurrences of x by Y in P, with change of bound names
where necessary, as usual. (There will be two ways of binding names.)

The first class of terms consists of guarded terms g.P, where P is a term and g is a
guard; guards g have the form

g ::= xY 1 x(y)

Informally, ~y.P means 'send the name y along the link named x, and then enact P ' ;
on the other hand, x(y).P means 'receive any name z along the link named x, and then
enact p{z/y},. Thus the guard x(y) is like the A-prefix Ay in that it binds y; it is unlike
Ay in that every name x E A f is a binder like A, but that only names (not terms) may
replace bound names.

The second class of terms express concurrent behaviour. The principal form is com-
position PIQ, which, informally speaking, enacts P and Q concurrently allowing them
to interact via shared links (i.e. shared names). Interaction can occur in the case

x(y).P I~z.Q (1)

and we expect the result of interaction to be p{z/y}]Q. This differs from fl-reduction
()~x i)N ~ i { N / x } in one essential: the 'sender' ~z.Q pursues an independent future
(as Q) after the interaction, while in/~-reduction the future behaviour of the argument N
is eontrolled by M via the variable x (in a way which varies from one reduction strategy
to another). This exactly reflects the crucial difference, mentioned in the introduction,
between the function and object paradigms.

Allied to composition is replication, !P; roughly, it stands for P{PI'" ", as many
concurrent instances of P as you like. Also allied is inaction, the degenerate composition
of no processes, denoted by 0.

The third class of terms has only one form: the restriction (x)P. It confines the use
of x as a link to within P. Thus, no intraaction, i.e. interaction between components,
can occur in

x(y).P [(x)(~z.Q)

On the other hand, if (x) is applied to (1) then no interaction at x can occur between
this term and any terms which may surround it; one therefore expects the equation

(x)(x(y).P I ~z.Q)) ~ (x)(p{Z/y} l Q)

for some congruence relation ~.
To summarise: for this paper, the syntax of P is

P ::= ~y.P [x(y).P [0 [P[Q] !p I (y)P

There are a few differences from the 7r-calculus given in [15]. Only one is a novelty:
the presence of !P. Replication 2 replaces recursion; for many purposes replication does

2To the original rules [15] of ~r-calculus, add the following (misstated in [14], footnote 2):

p[!p ~ pi
!p ~ I -+p

170

the job of recursion (perhaps even for all useful purposes), and is simpler to handle
theoretically. Otherwise, we are dealing with a sub-calculus. We have omit ted r . P
(silent guard), [x=y]P (matching) and P+Q (summation). The first two present no
difficulty for the present formulation, nor does summation in the limited form ~i gi.Pi
(sum of guarded terms). It is open how best to handle full summation in the present
formulation; but see the method adopted by Berry and Boudol in the Chemical Abstract
Machine [5].

Some technical details and terminology:

• There are two forms of binding: x(y) and (y). Note that x is free in x(y).P. We use
fn(P) for the free names of P, bn (P) for the bound names of P , and n (P) for all
names occurring in P.

• We call x the subject and y the object of the guards z(y) and ~y.

• We say that an occurrence of a term Q in P is guarded if it occurs within any
guarded term in P , otherwise it is unguarded.

• We shall often use 5 to mean a sequence x l , . . . , xn of names; s imilarly/5 for a
sequence of terms. Without risk of confusion, we also treat 5 sometimes as a set.
We also write (5) for the multiple restriction (xD. . . (x,) .

• We shall use several convenient abbreviations:

- We shall often omit ~.0' in an agent, and write for example ~y instead of ~y.0.

- We shall elide several guards with the same subject, for example x(y)(z) means
x(y).x(z) and "~yz means xy.xz.

- The agent (y)~y.P can be thought of as simultaneously creating and sending
a new private name, when x # y; we abbreviate it to ~(y).P.

So with all these abbreviations we shall be able to write agents like x(y)(z).yz(x),
meaning x(y).x(z).~z.(x)~x.O.

3 T h e 7 r - c a l c u l u s : E q u a t i o n s a n d R e d u c t i o n s

Our operational intuition is simple: if term R contains two unguarded subterms x(y).P
and "Zz.Q, and each restriction (x) contains both or neither (so that x means the same
for both subterms), then they can interact; this interaction yields a reduction R --* R'.
A few examples:

• Let R be x(y).P 1 ~Zl.Q1 I~z2.Q2. There are two reductions

R ~ p{zgy} I Q1 [bz2.Q2
R ~ p(z~/y} t'bz~.Q, t Q2

• Let R be w(x).(x(y).P l~z.Q). There is no reduction; the subterms are guarded.

• Let R be x(y).P [(x)('~z.Q). There is no reduction.

171

• Let R be x(y).P [(z)(hz.Q). Assuming z not free in P there is a reduction

R -+ (z)(p{zly} I Q)

We call this phenomenon extrusion (of the scope of a restriction); the name z
is private to (z)hz.Q, but its transmission has enlarged its scope to embrace the
recipient.

To simplify the form of the reduction rules, we first define a structural congruence relation
over terms. This approach is inspired by Boudol and Berry [5], though our formulation
differs from theirs. The idea is that one should separate the laws which govern the
neighbourhood relation among processes from the rules which specify their interaction.

3 . 1 D e f i n i t i o n
satisfying these equations:

(1) P = Q whenever P is alpha-convertible to Q

(2) R i O = P , P [Q - Q 1 P , P I (Q t R) = - (P t Q) I R

(3) ! P - P t !P

(4) (x)0 --" 0 , (x)(y)P - (y)(x)P

(5) (x)(P I Q) = p [(x)Q i f x n o t f r e e i n P

Structural congruence, written = , is the smallest congruence over P

A few facts are easily seen:

• Using the equations, all unguarded restrictions can be moved outermost. Note
particularly: !(x)P =_ (x)P I !(x)P - (x)(P I !(x)P).

• The interaction condition mentioned at the start of this section is invariant under

• Using the equations, any two potential interactors x(y).P, ~z.Q can be brought
together as x(y).P [~z.Q, but possibly with alpha-conversion; for example, if z is
free in P then

x(y).P [(z)(~z.Q) - (z')(x(y).P [hz'.Q{Z~/z})

where z ~ is new.

3 . 2 D e f i n i t i o n
rules:

Reduction, written --% is the smallest relation satisfying the following

COM : x(y).P] ~z.Q --+ p{z/y} [Q

P A R :

RES :

STRUCT :

p -+ p*

P [Q - + P ' f Q
p -+ p,

(y)p _+ (y)p,

Q - p p - + p, p, = Q,
Q -+ Q,

172

It is worth noticing that , just because of equation (3) in 3.1 for replication, structural
congruence may be hard to determine (perhaps even undecidable), and this may cause
some alarm in seeing the rule STRUCT, since we certainly want ~ to be computable.
But we are saved by the invariance of the interaction condition under ~ , noted above;
the interactions possible in a given term are quite manifest. In fact:

3.3 P r o p o s i t i o n A finite set Red(P) of agents can be recursively computed from P,
such that P -~ P ' if and only if P ' = P" for some P " C Red(P) . •

The present formulation of 7r-calculus differs strikingly from that in [15]. The essential
difference is in the use of structural congruence. This is inspired by the Chemical Ab-
stract Machine of Berry and Boudol [5]. Their insight is that the rules of structured
operational semantics, as used in [13] or [15] for example, treat in the same way two
concepts which it is worth separating: the physical structure of a family of concurrent
agents and their interaction. Of course, one advantage of avoiding the imposition of
structural congruence equations as axioms is that , once a behavioural congruence is de-
fined - as in [13] - it turns out that the structural equations are obtained as theorems,
and this gives added confidence. But then these equations are not kept clearly distinct
from other theorems which only hold because of the particular way in which observation
is characterised in the behavioural congruence. (For example, observation congruence
in [13] is based upon the idea of a sequential observer, and yields equations which do
not hold in a model which respects causality.) By proposing the structural laws as ax-
ioms, one makes the distinction and achieves some simplicity at the same time (at least,
when summation is not considered); one also offers the challenge to find an interesting
behavioural congruence which fails to satisfy the axioms (strongly suspecting that there
is none!)

For the next section we shall need the following:

3.4 D e f i n i t i o n P is r-determinate if, whenever P --** Q and also Q --* Q1 and Q --* Q2,
then Q1 =- Q2. Also, P converges to Q, written P ~ Q, if P --** Q 7~; we write P J. to
mean P converges to some Q, and PT otherwise. 1

4 T h e l a z y A - c a l c u l u s

Let the set of Variables, A', be an infinite and co-infinite subset of Af. For this section,
we shall let x, y, z range over A', and u, v, w range over Af -X. Our encoding of A-calculus
into zr-calculus will be all the simpler because we treat a variable x of A-calculus also as
a name of ~r-calculus.

We shall use L, M, N to range over the terms £ of A-calculus, which are defined as
usual by:

M ::= x [AxM [M N

the last two forms being abstraction and application. The free variables fv(M) of a
term M are defined in the usual way. {N/z} means substitution as usual. We shall
frequently need the the sequential composition of several substitutions (note: not simul-
taneous substitution); so, understanding the members of 5 to be distinct, we introduce

173

the abbreviation

stands for

We shall use the standard terms

I ae_=f ~xx y a,=f)~f(Axf(xx))()~xf(xx))
g d~f ~x)~yx ~ aef ()~xxx)(~xxx)

There are many reduction relations --% all of which satisfy the rule

/3: (AxM)N --+ M { N / z }

The relations differ as to which contexts admit reduction. The simplest, in some sense,
is that which admits reduction only at the extreme left end of a term. This is known as
lazy reduction:

4.1 D e f i n i t i o n The lazy reduction relation --* over £ is the smallest which satisfies
/3, together with the rule

M --+M I
A P P L :

M N --~ M ' N

With the usual convention that L M N means (LM)N, this implies that in any term M,
writing it as

M = MoM1M2.. . M,~ (n >_ O)

where Mo is not an application, the only reduction possible is when n _> 1 and M0 - AxN,
and then the reductum is

u{M1/x}M~ .. .M ,

Thus -~ is r-determinate - i.e. every M is r-determinate; given M, there is at most one
M' for which M --~ M'. We write --*+ for the transitive closure of -% and --+* for the
transitive reflexive closure.

4.2 D e f i n i t i o n M converges to M' , written M $ M ' , if M --+* M' 74; also, M.~ means
that M converges to some M'. m

If M ~ M', then M' can only be an abstraction ~xN or else of the form xN1. . . Nn
(n > 0). Writing £o for the dosed terms, if M • £o then M' C £o also, so M' must be
an abstraction.

Abramsky [1] defines an important preorder < , which we shall call applicative
simulation, as follows:

4.3 D e f i n i t i o n Let L, M E g0. Then L ~< M if, for all sequences N in £0:

LN.L implies M N J~

If L , M • £: with free variables ~, we define L g M to mean that L{N/~} <~ M{N/~} for
all N in £ o •

t74

Abramsky continues to study both the model theory and the proof theory of < and
of applicative bisimulation, ~ (i.e. ~< fl ~>). We need very little of this here, but
should remark that it firmly establishes the importance both of lazy reduction and of
these relations, and hence provides a natural point at which process calculus may try to
make contact with A-calculus. We recall from [1] that (AxM)N E M{N/x} , and that
~< is a precougruence. The latter follows from the result that, defining a context C[__]
to be a term with a single hole,

M < N iff, for every closed context C[__], C[M] J. implies C[N] ~.

We now turn to the encoding of/~ into T'. Perhaps one hardly expects to find a
more basic calculus than the A-calculus. All the same, it takes as primitive the remaxk-
ably complex operation of substitution (of terms for variables). Two important means
have been found to break this operation into smaller parts. In combinatory algebra [7],
Curry found combinators which progressively distribute the argument of an abstraction
AxM to those parts of the body M which will use it (thus, in fact, eliminating vari-
ables altogether). On the other hand, implementations of functions and procedures in
programming languages have traditionally used the notion of environment, a map from
variables to terms; thus, instead of executing M{N/x} one executes M itself in an envi-
ronment which binds N to the variable x. The encoding which follows can be seen as a
formalisation of the latter idea.

Each M E/2 is encoded as [M], a map from names to P. Thus [M]u is a term of
r-calculus, and will have free names given by

fn([M]u) = fv(M) tO {u}

The name u is the link along which [M] 'receives' its arguments.
Now, suppose that M will itself be used in place of an argument represented by the

variable x. Each time M is 'cMted', via x, it must be told by the cMler where to receive
its own arguments. (In more familiar terminology, it must be given a pointer to its
arguments.) The 'environment entry' binding x to M is therefore the ~r-term

~x :: M~ aa]x(w).~M~w

In passing, note particularly the replication. This is not needed if M will be cMled at
most once; therefore the linear A-calculus, in which each variable x must occur exactly
once in its scope, may be encoded in the fragment of 7r-calculus without replication. The
link with Girard's 'of course' connective '!' of linear logic [10] should be explored; his
notation has been chosen here deliberately.

How does [AxM]u receive its arguments? Along u it receives (as x) the name of its
first argument, and also the name of a link where the rest will be transmitted. This
explains the first line of our encoding, which we now give in full:

[AxM]u dej u(x)(v).[M]v
[@, de,

[MN]u de2 (v)([U]v [~(x)u.[x:=N~)

(x not free in N)

175

Let us look at the reduction of a simple example, in which we assume x not free in N
(recall the abbreviations listed at the end of Section 2):

~()~xx)N]u = (~)(. (~)(~) .~ I v(x)~.[z:=N])
(v)(x)(v(w).~w I ~u.ix := N]) (2)

-~ (=) (~ 1 Ix := N]) (3)
- (x) (~ l !x(~) . [N]~)

-~ [N~u I (x)[x:=N~ (4)
,.~ [N]u (5)

The following remarks will help in reading the above calculation:

• In obtaining (2), recalling that ~(x).Q means (x)vx.Q, equation (5) of Definition 3.1
must first be used to allow COM to be applied.

* The restriction (v) is dropped in (3) because v no longer occurs. Formally, if
v ¢ fn(R) then

(,)R =_ (v)(R l O) - R l(v)O - n lO - R

* In (4), (x) has been moved inwards, since x ~ fn([N]u).

• The last step, to (5), is the only one which goes beyond ~ ; it is a simple case of
strong blsimilarity- see [15] - and represents the garbage-collection of an environ-
ment entry ~x := N~ which cannot be used further (since the subject x of its first
action is restricted).

The correspondence between the reduction of [M] in the 1r-calculus and that of M in the
A-calculus is very close. Each step in A-calculus is matched - in a fully determinate way

- by a short sequence of steps in 7r-calculus. The essential difference, as was mentioned
earlier, is that substitutions {M/x}, which are actually performed upon A-terms, are
represented in ~ by what we have called environment entries Ix := M] which are agents
in their own right.

Let us introduce the abbreviation
N

[~ : = N] stands for [= l : = g d l " " [[xk:=Nk]

for the composition of several environment entries. Then the match between the reduc-
tion of dosed A-terms and the corresponding r-terms leads to the following theorem:

4.4 T h e o r e m (Lazy encoding) For all L E ~C °, [L]u is r-determinate, and one of the
following conditions holds:

i . L.[i ' and [i]u ~ P ' , where

L 1 -)kyM{NI~} and P' -(~2)(~.~yM~u I ~5:--N~)

B. LT and ~L~uT. •

176

Let us now briefly compare precongruence in the r-calculus with Abramsky's precongru-
ence of applicative simulation for the A-calculus.

The reduction relation ~ only tells part of the story of the behaviour of a r - te rm
P; it describes how P's parts may interact with each other, but not how P (or its
parts) may interact with the environment. Without repeating all the detail from [14],
we need to recall that the full behaviour of a r - te rm is presented by means of a labelled
transition relation -%, where a ranges over observable actions, in addition to the relation
Z+ (corresponding to ~ here), where T is the unobservable action. Then we define
=~ = -+*--%-+*, so that P =q~ means ' a may be observed of P , ignoring unobservable
actions'. The simplest precongruence over T' is then defined as follows:

4.5 Definit ion

(1) P E Q if, for all a, P :=~ implies Q =~.

(2) P E_ Q if, for all contexts C[__], C[P]E C[Q] .

This is a weak precongruence, which may be described as 'inclusion of trace-sets in all
contexts'; however, for determinate r-terms - such as the translations of A-terms - it
agrees with stronger ones. But we can show that even this weak congruence is strictly
stronger than ~ as far as (the translations of) A-terms are concerned:

4.6 T h e o r e m (Lazy precongruence) Let Li,L2 E f o. Then

(1) [[L1]u E_ [[L2]~u implies L1 <~ L2

(2) Li <~ L2 does not imply [L~]u E [[L2]u

The proof of (1) is quite short, using our encoding theorem. For (2), one can adapt
a counterexample of Ong [17], which strengthens Abramsky's result that his canonical
model of the lazy A-calculus is not fully abstract [1].

5 T h e c a l l - b y - v a l u e A - c a l c u l u s

We shall now, more briefly, repeat our programme for the ca11-by-value A-calculus [18],
where reduction in £0 may only occur when the argument is an abstraction. The terms
/~ are as before, and it is also convenient to define the values)) by

V ::= x [A z M

We shall let U, V, W range over ~2.

5.1 Def in i t ion The call-by-value reduction relation -% is the smallest which satisfies
the rules

#v : (AxM)V--,v M(VI~)

M ~ M' N ~ N'
A P P L : A P P R : •

M N ---~,, M ' N M N -% M N '

177

Reduction -+v is not determinate, 3 but it is well-known that convergence J,v is; if
M Sv M t then M ~ is unique. Moreover, convergence is strong: if M Sv M r then all
reduction sequences from M axe finite. (The definitions of ~ and Tv are analogous
with those for the lazy calculus.)

The corresponding applicative simulation relation < v is again a precongruence a,
and (AxM)VZ,~M{V/x}.

5.2 F a c t < and < , axe incomparable.
P r o o f I < K I f ~ ~ f t , and I ~ K I f t ~ < v f t .

We now turn to encoding in r-calculus. We shall continue to let x, y, z range over 2(
and now let p, q, r, u, v, w range over A f - X . In our new encoding ~M]vp , the name p
will have a different significance. The reason is that two 'events' which coincided for the
lazy calculus must now be separated, namely

, the signal at p that M has reduced to a value (needed when M is the argument of
an application);

. the receipt of arguments by an abstraction M (needed when M is applied).
Further, our 'environment entries' will now contain only values. So we begin by defining
[y := V]~ :

~y:=~xM]]~ d e_f !y(w).w(x)(p).][M]vP
[y := x]~ ~f !y(w).'Zw

Now the first action of a (translated) value, [V]~p, must be to announce its valuehood,
thus providing access to an 'environment entry' . Note that [y := V L is here a subterm
of ~V]v p ; whereas the opposite was true in the lazy encoding. And, in contrast with
the lazy calculus, the translation
' run ' in parallel:

[VII def vP ~-

[MN] def
vP ~-

ap(p~ q, r) de__r

~MN]v p of an application must allow M and N to

p(y). [y := V]v (y not free in V)

(q)(r)(ap(P,q,r) l [M]vq l lN]vr)

q(y).~(v).r(z).~zp

We now define the property which we wish [M]v p to possess, in place of determinacy:

5.3 D e f i n i t i o n P is weakly determinate if, whenever P ---+* Q , then

(i) If Q--+Q1 and Q ~ Q 2 , t h e n e i t h e r Q 1 - - Q 2 or Q1--+Q' and Q 2 ~ Q ' for
some Qt.

(ii) If Q2 + f o r ~ r , then Q ? 4 . •

We can now present a characterisation, almost exactly the same as for the lazy A-calculus,
of the way in which reduction in r-calculus matches reduction in A-calculus:

3plotkin's reduction rules [18] were more determinate than here, but the difference is unimportant.
4For this, we have to prove: If M ~ vN then C[M] ~v implies C[N] ~v. Allen Stoughton has pointed

out that there is a simple direct proof of the corresponding 'context lemma' for lazy A-calculus, following
Berry and Levy [4] or Milner [12]; the same holds (with a little more trouble) for the call-by-value case.

178

5.4 T h e o r e m (Call-by-value encoding)
and one of the following conditions holds:

A. L$,V and [[L]vp~P , where

V - w{U/5} and

B. LT. and [L].pT.

For all L E £o, [L],,p is weakly determinate,

We also find the same relationship of precongruences as in the lazy case:

5.5 T h e o r e m (Call-by-value precongruence) Let L1, L2 E / : 0 Then

(1) [i~],p E ~i2],p implies LI <~,L2

(2) i i ~ ,L2 does not imply ~L1]vp G [L:],p

The proof of (1) is just as in Theorem 4.3. For (2), consider the following:

(()()) LI = Ax xI xK

L: dg Ax((Ayy(xK))(xI))

fickle(r) dej ~(y).y(u).(u(x)(p).[[Ki]vply(v).v(x)(p).[l~p)

and place each [Li]vq in the context

(q)(r)(ap(p, q, r) l - -] fickle(r))

6 C o n c l u s i o n

We have only begun here to explore the treatment of functions in the ~r-calculus; the
reader will already have posed many questions. For example: Exactly what is the pre-
order _ induced upon A-terms by L __U_ M de~ ~L]u G [[M][u ? And are other reduction
strategies easy to encode?

In fact, we define

They are all equivalent under ~ , . . But in L~, x will be applied to I first, while in La
it will be applied to K first. (In L1 either may happen.) So in 7 ~ we construct a fickle
'function' which behaves differently on successive calls; it will behave like KI the first
time it is called, and like I the second time. When (the encodings of) L2 and L3 are
'applied' to the fickle function, the results will be respectively (the encodings of)

(KH)(IK) ,-,v= K
(II)(KIK) =..~v I

179

On the latter point, close examination of strategies reveals what may be called an
oddity, seen in the light of the object paradigm. Consider any strategy in which all the
rules fl, A P P L and APPtt hold. Suppose that M[x, x] is a term in which x occurs twice
not within an abstraction, and suppose

N = N I ~ N 2 - - * " ' ~ N ~ - * " "

Then of course

(AxM)N --*... --~ (AxM)Nk --* M[Nk, Nk] --** M [N ~ , N ~] -* . . .

For the first k steps, N's reduction is 'shared'; thereafter, two separate reductions of Nk
can continue within M, at different speeds (and in different directions too). This familiar
situation looks odd if N is modelled as an agent; why should it clone into two or more
copies just because access to N is transmitted through x? (Of course, it is reasonable
for N to clone when it is eventually applled to two or more different arguments within
M.) Naturally, the strategies which have been most deeply studied are those most
easily expressed using the textual substitution which is basic to A-calculus. One effect
of providing z-calculus as a substrate may be to intensify the study of other strategies,
such as those with shared reductions.

As far as application is concerned, we hope that the results of this paper will throw
some light on the semantics of programming languages which contain both concurrency
and non-trivial use of procedures or functions.

R e f e r e n c e s

[1] Abramsky, S., The Lazy Lambda Calculus, to appear in Declara t ive P r o g r a m -
ming, ed. D. Turner, Addison Wesley, 1988.

[2] Astesiano, E. and Zucca, E., Parametric channels via Label Expressions in CCS,
Journal of Theor. Comp. Science, Vol 33, pp45--64, 1984.

[3] Bergstra, J.A. and Klop, J-W., Algebra of Communicating Processes with Abstrac-
tion, Journal of Theor. Comp. Science, Vol 33, pp77-121, 1985.

[4] Berry, G., ModUles Compl~tement Adgquats et Stables des lambda-calcul typds, Th~se
se Doctorat d'Etat, Universit~ Paris VII, 1979.

[5] Berry, G. and Boudol, G., The Chemical Abstract Machine, to appear in Proc 17th
Annual Symposium on Principles of Programming Languages, 1990.

[6] Boudol, G., Towards a Lambda-Calculus for Concurrent and Communicating Sys-
tems, Proc TAPSOFT 1989, Lecture Notes in Computer Science 351, Springer-
Verlag, pp149-161, 1989.

[7] Curry, H.B. and Feys, R., C o m b i n a t o r y Logic, Vol 1, North Holland, 1958.

[8] Clinger, W.D., Foundations of Actor Semantics, AI-TR-633, MIT Artificial Intelli-
gence Laboratory, 1981.

180

[9] Engberg, U. and Nielsen, M., A Calculus of Communicating Systems with Label-
passing, Report DAIMI PB-208~ Computer Science Department, University of
Aarhus, 1986.

[10] Girard, J.-Y., Linear Logic, Journal of Theoretical Science, Vol 50, pp111-102, 1987.

[11] Hoare, C.A.R., Communicating Sequential Processes, Prentice Hall, 1985.

[12] Milner, R., Fully Abstract Models of Typed Lambda-calculi, Journal of Theoretical
Science, Vol 5, ppl-23, 1977.

[13] Milner, R., Communication and Concurrency, Prentice Hall, 1989.

[14] Milner, R., Functions as Processes, Internal Report, INRIA, Sophia Antipolis, De-
cember 1989.

[15] Milner, R., Parrow, J.G. and Walker, D.J., A Calculus of Mobile Processes, Parts I
and II~ Report ECS-LFCS-89-85 and -86, Laboratory for Foundations of Computer
Science, Computer Science Department, Edinburgh University, 1989.

[16] Nielsen, F., The Typed)~-calculus with First-class Processes, Report ID-TR:1988-43,
Inst. for Datateknik, Tekniske Hojskole, Lyngby, Denmark, 1988.

[17] Ong, C-H.L., Fully Abstract Models of the Lazy Lambda Calculus, Proc 29th Sym-
posium on Foundations of Computer Science, pp368-376~ 1988.

[18] Plotkin, G.D., Call-by-name and Call-by-value and the A-calculus, Journal of The-
oretical Science, Vol 1, pp125-159, 1975.

[19] Thomsen, B., A Calculus of Higher-order Communicating Systems, Proc 16th An-
nual Symposium on Principles of Programming Languages, pp143-154, 1989.

